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Abstract—The Bitcoin block-chain is the scoreboard of Ran-
somware. By mining the data in it and within the malware itself,
we can understand the distribution of ransoms and characterise
ransomware risk. Ransoms follow the power-law distribution in
their amounts. The alpha parameter (α) of those power laws
suggest they do not have a well defined average for most years
in our study. Indeed, there has not been an α above 2 since 2015
and so there has not been a stable ransomware average since
that time. The changing α has strong implications for cyber risk
management and policy responses to ransomware attacks.

Index Terms—Ransomware, ransoms, block-chain, Bitcoin,
malware, ecrime, forensic-accounting, power-laws, security eco-
nomics, cyber risk, black swans

I. INTRODUCTION

Cyber insurance is growing rapidly, and needs risk models
to continue to efficiently match capital to risk. Ransomware
is a particular problem within the space, and one which so
far is often characterised by discussion of average ransoms
and average losses1,2,3. Average ransoms are a common metric
used in both the security industry and the academic literature to
talk about ransomware [1–6]. This paper amply demonstrates
that averages are not stable nor a true measure of central
tendency when the underlying distribution of events follows
a power law with an α parameter below 2. To progress risk
management of ransomware, we need better models that fit
the underlying distribution of ransoms. Using Kolmogorov-
Smirnov statistics to test for goodness of fit, we show that
ransoms from 2013 to 2019 follow a power law pattern in most
years and so we advocate that averages ought to be abolished
as a characterisation of outcomes in security reports and
actuarial tables of cyber risk. Maximum likelihood distribution
fits may find ransoms follow another distribution in the future
when more ransoms are available, our goal here is a softer

1https://www.coveware.com/blog/q1-2020-ransomware-marketplace-
report

2https://kivuconsulting.com/ransomware-you-can-prevent-it-but-you-
cant-solve-it/

3https://www.businesswire.com/news/home/20170515006833/en/Symantec-
Blocks-22-Million-Attempted-WannaCry-Ransomware

one than a precise distribution fitting; it is to simply show
they have heavy tails.

Power laws and heavy tails in cybersecurity are nothing
new and show tremendous potential to better model cyber-
security risk [9]. Others have clearly demonstrated that data
breaches follow power laws [10], unpacked how heavy-tailed
cybersecurity events affect the collection of data through
cybercrime surveys [11]), used power law distributions within
a multi-period Monte Carlo simulation to test for Simpson’s
Paradox in aggregate cybersecurity statistics [12], and tend
to be relevant for estimating cyber losses from insurance
data [13]. Other heavy-tailed distributions such as lognormal
have also been found to apply to things such as phishing site
lifetimes [14] and the time to recovery of IT assets [15].They
have even been used to counter the argument that powerlaws
fit data breaches [16]. Yet previous studies have not attempted
to fit power law distributions to modern ransomware, and we
believe our work to be novel in that respect4.

Hubbard and Seiersen wrote that risk quantification is
essentially just the iterative reduction of uncertainty [17]. The
focus here is to reduce uncertainty through measurement by
quantifying the year-on-year severity of ransoms and demon-
strating the potential fit of a power law distribution as a tool
towards uncertainty reduction. Power laws do not fit the data
in all years in our sample, but do for most and overall. This on-
again-off-again statistical significance is consistent with other
work fitting power laws to wealth distributions [18]. Better
fitted metrics for ransoms can significantly improve both cyber
insurance and global crime management policy. The presence
of power laws also imply that ransom prices can exhibit black
swan events and present an accumulation and aggregation risk.
More importantly the use of averages can lead to inaccurate
estimations of costs if data is collected via cybercrime surveys
rather than directly from the Bitcoin blockchain [11]. To put
it succinctly, a survey of income will have two very different

4The blockchain didn’t exist at the time that some of these previous
papers were authored.



averages if it includes or doesn’t include the top 1 percent of
wealth and ransomware payments are largely the same.

II. DATA AND METHODS

The data studied in this paper include over 5.4 million
payments to over 26,000 BTC addresses used in malware
or ransom notes between 2011 to 2019. It was assembled
by finding Bitcoin addresses within ransomware binaries or
ransom notes, and enriched by finding copayments from
those addresses to other addresses (Simplistically, examining
bundles of addresses while ransomware gangs ”cash out”).
This allows us to find payments associated with ransoms,
that might normally be hidden from our collected malware
samples, and was done in a manner consistent with one
author’s previous work on copayments [7]. It is possible that
some of those payments are for other things than ransoms, but
we do not believe it invalidates our points about heavy tails
and averages in this paper. It is one of the largest available
datasets on ransomware ransom payments that we know of,
which also preserves the forensic connections between binaries
and cryptocurrency addresses.

The majority of the data used in this report is already
in the public domain within the block-chain, and available
from many fine APIs. By using the code we have written,
the interested reader can gather bitcoin addresses from any
ransomware data set at their disposal. Ours came from the
wonderful data at5 and BTC Abuse6. For obvious reasons we
cannot share our malware corpus, but some simple vetting can
be done with the administrators of VirusShare to gain access
to it yourself. We also believe the results in this paper could be
reproduced from other malware databases such as the Malware
Bazaar7 or PolySwarm8. Once you have gathered enough
ransomware addresses, you begin by gathering all transactions
to those addresses, normalise the value in USD per diem as
a BTC daily spot price and then apply the Powerlaw Python
library to analysis of such data USD normalised data. [8].

Despite the scope of our malware data, it is important to
acknowledge the limitations of this method. Not all ransoms
paid as a result of ransomware attacks can be included. First,
we only focus on ransoms paid in Bitcoin. The graphical inlay
clarifies the data collection process see Fig. 1. Secondly, if an
address is not included in a binary or ransomnote and only
shows up in negotiation, we are less likely to have found
it. We use other methodologies to collect those addresses,
but we acknowledge those methodologies as ad hoc. Despite
some obvious limitations, we do not see any reason why
this collection methodology, particularly when combined with
the scale of the data, would be systematically biased in a
way that would effect out estimation of the fit of power law
distributions. When we extrapolate about other things, we will
be careful to caveat what we believe are blinds spots or biases
of the data.

5https://virusshare.com/
6https://www.bitcoinabuse.com/
7https://bazaar.abuse.ch/
8https://polyswarm.io/

No doubt malware enthusiasts will be primarily focused
on some metadata of our malware corpus rather than the
economics of payments. A table can be found at the end of
the Appendix that should satisfy the thirst of those readers.
The table that shows the most common filetypes (above 10000
samples of that filetype) that we processed. We choose to
publish this slightly abbreviated list as the full table of file
types would be more than 1000 lines, with many, many files
that are unique in many ways. Also please note that these
are not all ransomware files, but rather malware or associated
with malware, that we sifted through to find ransomware.
Once ransomware was identified we turned our efforts to find
ransomware Bitcoin addresses.

It should also be noted that the number of ransoms per year
in the data drops by 4 orders of magnitude across time. This
decline is probably not strong evidence that the occurrence rate
of ransomware has necessarily dropped, but rather a side effect
of our collection methodology. Putting it simply, if there is not
cryptocurrency address in a malicious binary, then we will not
discover it. E.g., if the ransom note only has an email address
(an increasingly common practice), then we will not be able to
discover a BTC address and record the payment of a ransom.
Criminal adaptation, in other words, might be affecting the
coverage of the data over time. But it is not clear a priori
whether changing tactics would simply reduce the volume of
recorded attacks at random or do so in a systematic way.

A. Ransomcoin

A variety of tools help us produce the data we analysed in
the paper, and can be reused by others to reproduce the work,
or indeed challenge its findings in the future.

1) Code: The code we used to gather the BTC accounts
from ransomware samples is called RansomCoin and is stored
and maintained here9. We provide the specific commit used
for this paper, for reproducibility reasons. Though readers in
the future may prefer to use a more up to date version of both
the data and the code depending on their goals.

Most of the code used in this project is very simplistic, and
specific to the formatting our data set. In the two images below
though, we display the general code that would be useful to
anyone to explore ransoms or ransomware losses with the
Python3 Powerlaw library, for a more generalised dataset than
our own.

III. RESULTS

One of the defining features of a power law distribution is
that the mean and median diverge. In a normal distribution,
descriptive measures such as the mean, median and mode
point to the centre. When power laws are at play, mean
averages tend to be wildly inflated by the outliers in the
heavy tails. Data breaches exhibit such a pattern, with a “A
factor 4.5× difference between mean and median [which] is
indicative of greater concentration than even the US wealth
distribution” [10].

9https://github.com/Concinnity-Risks/RansomCoinPublic/commit/
bd554ba41c55e074f79069fe4e14f4762bb71228



Fig. 1. A quick description of how we collect and process our data on
ransoms.

At a basic descriptive level, the ratio of mean to median
in our ransomware ransom data set is an excruciating 31.07
(cf. TABLE 1). These descriptive results strongly suggest
that heavy tail distributions might best fit the underlying
data and, more parenthetically, that using averages [1? –6]
to discuss and price ransom risk will both lead to routine
over payment and fall prey to the risk of astronomically large
events found in the heavy tail of the ransom distribution. To
formalise the distributional fit of the data, we employ a series
of Kolmogorov-Smirnoff tests and log/log plots.

A. Power-laws apply to Ransoms

Power laws apply in many places and are particularly
common in questions of income and wealth [19]. Indeed, the

TABLE I
MATHEMATICAL CHARACTERISTICS OF THE RANSOM DATA IN THIS

PAPER.

Parameter USD
Variance 49,633,044.87
Mean 800.58
Median 25.77
Ratio 31.06

Pareto Principle (i.e. 80 percent of the outcome is produced
by just 20 percent of the inputs) was coined in the realm of
wealth inequality. Power laws also apply to the concentration
of users on websites and other online services, the topography
of incoming links, the distribution of academic citations, the
magnitude of earthquakes and solar flares, the intensity of
wars, and the sizes of cities [20–23].

Power laws likely apply to ransoms not necessarily because
of anything to do with malware design or the propagation
of infections across networks. Instead, ransoms likely follow
a power law distribution because corporate and civic wealth
does [19]. Framed differently, if we assume that malicious
actors are targeting their ransomware with knowledge of their
target’s general size (e.g. a big company versus small or a
large city of millions versus a tiny town of a few thousand),
then they ought to calibrate their ransom demands based upon
their target’s expected ability to pay (willingness to pay in the
economics parlance). Since that ability to pay is a function
of revenue that is distributed in a power law, then ransoms,
it stands to reason, are a sampling themselves of that power-
law distributed wealth. Additional measurement going forward
can parse the fit of other long tail distributions such as log-
normal or parabolic fractals, which may indeed turn out to be
the most likely fits. Regardless, we will have succeeded in our
goal to have abolished the use of averages by that time. Why
shouldn’t averages be used in our ransomware studies?

Formally, power-law distributions are:

P (x) = CX−α (1)

The α parameter of the power law determines the stability of
the average. For example, if:

1 < α < 2 (2)

Then the mean and average are infinite10. Also notably, even
when:

2 < α < 3 (3)

There is a finite mean, yet there is still not a well defined
standard deviation. This complicates the ability to predict
ransoms (and as a follow on, losses if they follow the same
distribution). α parameters drifting into or out of this territory
could move ransomware from insurable via standard methods

10http://tuvalu.santafe.edu/∼aaronc/courses/7000/csci7000-001 2011
L2.pdf



to insurable via catastrophe bonds. These are literally the ”fat
tails” of Kousky and Cooke in ”Explaining the Failure to
Insure Catastrophic Risks” [25].

Quoting them:
”Risks that people colloquially term “catastrophic”
are usually characterised by fat tails and dependence.
With fat-tailed loss distributions, the probability of
an event declines slowly, relative to its severity.
Simply, very large losses are possible. The precise
mathematical definition of fat tails is rather subtle,
but a working notion is that damage variable X
has a fat tail if, for sufficiently large values x,
the probability that X exceeds x is kxa, for some
constants a, k>0. The variable a is referred to as the
tail index and it roughly governs how fat the tail of
the distribution will be. Many natural catastrophes,
from earthquakes to wildfires, have been shown to
be fat tailed.”

The distribution fitting was done using the Python Powerlaw
package [8]. We chose to plot ransoms above $10,000 in the
tables and graphs because cyber insurance is not interested in
lower limit ransoms, as they are unlikely to ever turn into
claims. Pooling the data from all years and plotting on a
log/log plot with a fitted Kolmogorov-Smirnov power law
trend line is indicative Fig. 2. Interpretation of a KS one
sample statistic works via rejection of the null, where the
null hypothesis is that the sample is drawn from the specified
distribution, in our case a power law distribution. We suspect
that there might be two populations of ransoms at play, one
that applies to an individual who is asked to pay smaller
ransom values and where parametric statistics might apply and
another where organisations asked to pay higher dollar values
that are subject to fat tails. One friendly economist-turned-
malware-analyst suggested this might show the price-takers
at the bottom and the price-setters at the top. Dropping the
economics jargon: only the big companies can afford ransom
negotiators who reduce the ransom substantially. So even
within ’organisational ransoms’ there may be one distribution
of un-negotiated ransoms and another of negotiated ransoms.

This muddies the waters of distribution fitting, because we
may be dealing with more than one underlying distribution
and one may have averages while another does not. Or both
may, or neither. Which is why we make it clear that seeing the
divergence of the median from the mean suggests even ran-
soms have fat tails, regardless of our ability to disentangle the
underlying distributions. Clearly further work in distribution
fitting can be done as more data and losses emerge. Future
papers by better statisticians may be able to find the signal in
the noise, and we encourage them, while also suggesting we
stop using averages to discuss ransoms because they clearly
over inflate median severity.

Of course, the pooled sample showing 2013 ransomware
alongside 2019 ransomware events could mask underlying
temporal variation in the data. It is widely reported that
ransomware is ”getting worse”, though this is not usually
articulated with mathematical or actuarial clarity. Yet, as can

Fig. 2. This figure captures all ransom and copay data analysed, and shows
the power-law fit

be seen in the data below that dis-aggregates the results into
yearly estimation, the frequency of ransoms was much higher
before 2016, though the severity is much higher afterwards.
We believe this to be broadly true. This finding somewhat
counters the narrative that security companies and insurance
companies are pushing: That ransomware is occurring with
ever growing frequency. It also highlights a fascinating phase
transition from mass ransomware with lower ransoms to
targeted corporate ransomware with much higher impacts and
associated ransom payments.

B. Yearly analysis of ransoms

In 1989 Joseph L. Popp Jr. invented the first ransomware
virus spread on floppy disks11. Unfortunately, we don’t have
access to the data on how many people paid the PC Cyborg
corporation in Panama, though we do know the exposure
rate (20,000 diskettes distributed at a WHO AIDS event) and
ransom demanded ($189 USD). Notice the fixed price ransom
here, which became variable pricing over time.

However, the game really changed for attackers and defend-
ers with the invention of Bitcoin in 2008, and the realisation
of a public ledger on 3 January 2009 [26]. This allowed
us an unparalleled view into the transactions of ransomware
from 2013 onwards. It also offered exceptional scalability
to ransomware operations. The ability to perform all the
necessary steps in an automated way online, increased their
opportunities in both scale and maintaining anonymity. This
led to a wide proliferation of victims paying small amounts. A
notable strain of 2013 Ransomware was Cryptolocker, which
spread via emails, file sharing, and downloads.

For all the years in our data, we show our other parameters
(both set and derived) the TABLE II. Below, we provide 12
month rolling windows of analysis for each of years in the
data, which we also scale to be the same size on the advice
of a trusted friend. Fitting by year allows us to track changes
to the α parameter that might be germane to both the stability

11https://www.knowbe4.com/aids-trojan



of ransom averages and the management of cyber risk. The
tables speak to that point in the Data and Code Appendix.

TABLE II
YEARLY α AND σ VALUES OF THE FITTED POWER LAWS.

Year xmin xmax α σ Observed Ransoms
2013 10000.0 None 2.35 0.010 684,813
2014 10000.0 None 2.42 0.005 4,137,194
2015 10000.0 None 2.16 0.065 155,584
2016 10000.0 None 1.78 0.013 444,030
2017 10000.0 None 1.50 0.012 20,987
2018 10000.0 None 1.77 0.042 20,983
2019 10000.0 None 1.98 0.135 1,980

With that bit of yearly context, let’s look at the severity
of ransoms paid per year. In each figure, we plot the a
Kolmogorov-Smirnov statistic and a baseline threshold value
with an α of 2 under neither which traditional instruments
of insurability fail to apply. For the data from 2013, as can
seen in Fig. 3, the Kolmogorov-Smirnov distance of a power-
law distribution fit is both statistically significant, suggesting
that the data do not follow a power law, and shows an α
of 2.352. The plotted power-law distribution with an α of
2.00 for reference is displayed in the rest of the graphs that
progress year by year. This visual aid continues throughout the
graphs in the paper to help reflect on questions of averages and
variance, and identify the threshold with which their properties
shift in power laws.

Fig. 3. This figure captures 2013 ransom data, and shows the power-law fit
and resulting alpha parameter.

2014 saw the development of Cryptowall I and II, as well
as CTB-Locker, and CryptoTorLocker2015. In Fig. 4, power-
laws do not fit the data in this year, and the α parameter
is similar to that of 2013, notably also similar to studies of
wealth distribution over time where the fit varies by time
frame and sample. Note particularly Brzezinski’s ”Do wealth
distributions follow power laws? Evidence from ‘rich lists’”:
Figure one of that paper shows the global variance of the α
is 3.3 - 2.2 [18].

Fig. 4. This figure captures 2014 ransom data, and shows the power law fit
and resulting alpha parameter.

In 2015 the α reverses direction and begins approaching 2,
suggesting greater mean/median divergence. The KS statistic
still suggests that the sample is not drawn from a power
law distribution, but averages in this period are trending
toward a worse measure. This complicates things, both in
modelling terms, but also insurability. The alpha in this period
is testing some of the limits of traditional risk mitigation and
management. We believe the alpha of losses might be even
lower than that of ransoms, though. This follows logically,
since when a ransom is paid one presumes it was cheaper to
do so than to handle the losses (the principle that victims who
pay are rational). The losses contain many more categories
of expense which mostly are proportional to organisation size
I.E. reputational harm, business interruption and downtime,
regulatory fines, future audits, and forensic investigations.

This drift towards an alpha of 2 can be seen in Fig. 5.
We hope that insurance companies aren’t building strategies
where simply paying the ransom is the approach, because that
could lead to severe accumulation risks in a world of powerlaw
distributed ransoms12. It’s worth paying special attention to
who your incident responders are13.

In Fig. 6, we can see that 2016 ransoms have an α of lower
than 2, and also supports the statistical fit of our power-laws.

However, the trend in the data through 2015, is in many
senses not as troubling as the α parameter we find in 2016.
Here, the KS statistic fails to reject the null, suggesting that
the data do follow a power law distribution and the α drops
below 2, making averages inherently unstable.

In fact we prefer to interpret it as shifting the burden of
ransomware insurability onto those who wish to insure it. Let
those who can disprove this paper with one of their own build
the model of ransomware insurance accumulation. They will
no doubt earn their salary many times over by doing so.

12https://www.propublica.org/article/the-extortion-economy-how-
insurance-companies-are-fueling-a-rise-in-ransomware-attacks

13https://features.propublica.org/ransomware/ransomware-attack-data-
recovery-firms-paying-hackers/



Fig. 5. This figure captures 2015 ransom data, and shows the power-law fit
and resulting alpha parameter.

Fig. 6. This figure captures 2016 ransom data, and shows the power-law fit
and resulting alpha parameter.

Returning to the data though, perhaps a log-normal or
truncated power-law would still fit here. The α lower than
2 though shows us that we are dealing with very heavy tails.

The total costs of historical wars is considered to be
uninsurable, and many powerlaws are present in the analysis
with an α lower than 2 [31].

In Fig. 7, we see this trend of α reduction continuing.
Indeed, this is the minimum α we will witness within the
data set we have studied. A historical low in the frequency of
ransomware events that we can detect, but a notably high in
terms of severity. This also coincides with the FBI stating that
there were over 4,000 ransomware attacks per day that year14.
That provides us a rare opportunity to check our number of
ransoms for 2016 (444030/365 gives us 1216.5), suggesting
our data set is only seeing a little over a quarter of 2016
occurrences of ransomware (though perhaps no ransom was
paid in those cases).

14https://www.fbi.gov/file-repository/ransomware-prevention-and-
response-for-cisos.pdf/view

Fig. 7. This figure captures 2017 ransom data, and shows the power-law fit
and resulting alpha parameter.

In Fig. 8, the power law distribution still fits the data,
but we see a return towards the threshold of alpha to where
mathematical conditions change. We wonder if such a trend
will continue, or it will turn back again after some new
innovation in ransomware policy. Indeed a tantalising and
intriguing intellectual question is: Could cyber policy inter-
ventions change the alpha of ransoms in some way?

Fig. 8. This figure captures 2018 ransom data, and shows the power-law fit
and resulting alpha parameter.

Consider then, if you were simply paying ransoms through
insurance since 2016, this would be a strategy doomed to make
ransoms too unpredictable for actuarial tables and traditional
insurance methods. Ideally no insurance company would con-
sider this strategy simply on the grounds that it creates many
perverse incentives and feeds the problem. Secondarily it is a
legal risk and moral hazard that should be avoided. However, if
the moral and ethical arguments fail to motivate, then perhaps
we should return to the idea that as they increase in severity,
we push the α into places where traditional insurance risk
management fails.



Fig. 9 is included for completeness, but contains less ran-
soms than we believe occurred. This is discussed extensively
in the next section.

Fig. 9. This figure captures 2019 ransom data, and shows the power-law fit
and resulting alpha parameter.

For this final year, we have not created a table of rolling
windows as 2020 is not finished at the time of writing, and also
the small number of ransoms from which to work make the
data quality issues too great to be included. It is left to future
authors to examine if these trends continue, and postulate the
causation of power-laws in ransomware ransom severity.

IV. DISCUSSION

Let us be succinct here: our main premise throughout
this paper is that the α of power-laws fitted to ransoms is
not related to technical elements of the malware such as
the spreading factor of infections, or number of systems
vulnerable to a particular CVE. Instead, the α of ransoms
reflects the α of financial power-laws located throughout
society, such as the α of 2.32 for American personal
wealth in documented in [11] or [27]. Thus the α in
ransoms reflects a malicious actor’s assessment of their
target’s ability to pay. Like in the market for malware
more generally, Sutton’s Law prevails15 and the financially
wealthy, be they big firms, large cities, or giant organisa-
tions, seem to be reaping the negative outcomes of their
concentrated wealth [28].

The empirical findings suggest that ransoms fit a power law
distribution in many of the sample years and the underlying
causal explorations suggest several relevant points. First, it
is likely that all-in losses are even more scale free than direct
ransom costs. Ransoms will compose some fraction of costs an
enterprise needs to pay, but do not directly include remediation
and recovery costs, loss of services, nor any potential intan-
gible costs associated with a tarnished reputation. Generally,
though, ransom costs will be less than all-in costs, except
in the event that sufficient backups are at hand to eliminate

15https://en.wikipedia.org/wiki/Sutton%27s law

the risk without paying. If ransoms alone are pushing the
boundaries of risk management through averages, then all-
in losses with a lower alpha would be too. Essentially, for
the firms, organisations and entities hit with larger ransom
demands where the lower α suggests that averages are highly
unstable and standard deviations will be misleading.

Second, there are potentially two or more populations
of ransoms with different underlying distributions at play.
Power laws appear to apply in most years, so averages will
break down and potential losses become scale free. But it
is possible that for some subset of the ransom payments,
typical parametric statistics likely still apply. To the extent
that the causal reasoning that ransoms follow a power law
because wealth/resources do the same is correct, at least two
populations might be at play. One population in the lower
ransoms of the distribution likely includes small organisations
and individuals, those whose wealth is such that they will only
be targeted with a ransom valued at a few hundred dollars.
Here, speaking of average ransoms likely captures a somewhat
stable measure of central tendency, with little price targeting
by ransomware gangs. The second population includes larger
firms, governments and organisations. Ransom risk for this
population might be non-parametric in most years and is more
likely to be above $10,000.

This second population where averages fail to apply is
of especial interest to insurers. Bigger organisations are the
most likely to actually purchase insurance for cyber risk, but
they may be the least likely to have ransom costs and all-in
financial losses due to a security event that can be modelled
well with tradition parametric statistics. Reinsurers and cyber
policy advocates should be worried about the low α of ransoms
for large firms and examine how they might shift it back into
a stabler parametric statistical range.

To that end, the cyber-insurance industry may be able to
”push” the α of ransoms higher through a variety of mecha-
nisms. A government back stop16 such as the one provided
to poolRE17, is one option. Another is the construction of
Catastrophe Bonds [25]18. Indeed it might be possible to use
these power laws as a parametric risk trigger for ransomware
in the future. Risk Pooling19 is another option and has been
used to tackle other reinsurance aggregation and accumulation
problems. Some novel approaches within the technical domain
might be the creation of bounties for ransomware decryptors
and other technical measures, or the construction of a ded-
icated cyber insurance CERT, perhaps even a non-profit or
community interest scheme dedicated to reducing ransomware
losses through a variety of methods.

16https://www.brookings.edu/blog/techtank/2019/09/27/a-federal-
backstop-for-insuring-against-cyberattacks/

17https://www.globalreinsurance.com/a-tale-of-two-systems-terrorism-
reinsurance-backstops-in-the-us-and-uk/1428134.article

18https://en.wikipedia.org/wiki/Catastrophe bond
19https://www.worldbank.org/en/news/feature/2017/11/14/what-makes-

catastrophe-risk-pools-work



V. CONCLUSIONS

The blockchain is the scoreboard for ransomware and CERT
teams everywhere. As such it has been largely ignored for ran-
som risk analysis, focusing almost exclusively on identifying
new strains of ransomware or new addresses being used for
crime. We believe this paper is one of the first to identify that
the blockchain is also enormously useful for constructing risk
and actuarial tables for ransomware. This might benefit every-
one, for example if an open source ransomware risk model was
built like those in Oasis20, then any business, organization or
government could quickly estimate their ransomware risk and
then move forward with mitigation, restitutions, or transfer
mechanisms. Such an open source collaboration could also
benefit insurers, reinsurers, Computer Emergency Response
Teams (CERTs), and anti-ransomware projects such as the
wonderful NOMORERANSOMS project alike21. Continual
measurement is also key, as attackers change their way of
doing things in directions that could affect the underlying
distributional type.

Ransoms can probably be split into a population of small
payments and comparatively estimable risk and a second
population that might be pushing the boundaries of risk man-
agement or insurability by averages. This might mean we need
to energise communities such as global CERTs22, insurers,
reinsurers, digital forensics companies, and even governments
to collaborate on methods that reduce the α parameter of losses
and ransoms. What these methods may achieve remains open
to discussion, but at least we have a methodology year on year
to see how we are progressing. Only when reinsurers insist
that insurers begin the process of active risk management as
well as passive risk transfer, will we see a manageable risk of
ransomware in the global economy.
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to thank the curiosity of the penguins for inspiring him. You
know who you are.

“The authors declare no conflict of interest.”

REFERENCES

[1] Paquet-Clouston, Masarah, Bernhard Haslhofer, and
Benoit Dupont. ”Ransomware payments in the bitcoin
ecosystem.” Journal of Cybersecurity 5, no. 1 (2019).

[2] Alhawi, Omar MK, James Baldwin, and Ali Dehghan-
tanha. ”Leveraging machine learning techniques for
windows ransomware network traffic detection.” In Cy-
ber Threat Intelligence, pp. 93-106. Springer, Cham,
(2018).

[3] Sgandurra, Daniele, Luis Muñoz-González, Rabih
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APPENDIX A
CODE AND DATA APPENDIX

Fig. A.1 contains a crucial snippet of the code used to fit
power laws for scientific clarity. This should make it possible
to reproduce the work with other datasets, or claim the code
was misused in some way. A necessity of scientific publication
is verifiable and reproducible results, after all.

The other tables display changes to the rolling windows of
study to verify if the KS distance was a fluke of data shaping.
These tables also serve to document the powerlaws continue
to fit in a variety of different time intervals, which is an impor-
tant property of power laws generally. TABLE A.1 explores
one year rolling windows between 2013-2014. TABLE A.2
explores one year rolling windows between 2014-2015. Note
particularly some of the fluctuations in KS distance, showing
some windows of time that powerlaws are not found to be
statistically significant within. We don’t believe this invalidates
our results, but does capture why tables such as these must
be displayed. TABLE A.3 explores one year rolling windows
between 2015-2016. This table is particularly interesting as it
identifies the year the fat tails intensified. Could this be the
year that ransomware gangs shifted from targeting personal
computers to corporate networks? TABLE A.4 explores one
year rolling windows between 2016-2017. The KS distance
of many of these windows raises some questions. It is our
belief that as more ransoms from these periods are gathered,
the heavy tails will bear out again. However, it is also possible
changes in ransom negotiations or law enforcement changed
something substantial within the ecosystem. Determining what
it was and why it broke the power law relationship would be
a ground breaking bit of policy work. TABLE A.5 explores
one year rolling windows between 2017-2018. TABLE A.6
explores one year rolling windows between 2018-2019. Not
that these last two tables probably contain many fewer ran-
soms than actually occurred in the wild. Collecting this data
carefully for the future will ensure that time will tell.



Fig. A.1. This figure shows the code used for fitting power-laws to ransoms.

TABLE A.1
ALTERNATIVE ROLLING WINDOWS 2013-2014

Time span xmin xmax α σ KS distance
Jan 2013 to Jan 2014 10000.0 None 2.35224 0.01076 0.04851
Feb 2013 to Feb 2014 10000.0 None 2.32300 0.00957 0.05166
Mar 2013 to Mar 2014 10000.0 None 2.32445 0.00910 0.05008
Apr 2013 to Apr 2014 10000.0 None 2.43384 0.00650 0.04246

May 2013 to May 2014 10000.0 None 2.43761 0.00581 0.03746
Jun 2013 to Jun 2014 10000.0 None 2.44709 0.00542 0.03505
Jul 2013 to Jul 2014 10000.0 None 2.42149 0.00493 0.02580

Aug 2013 to Aug 2014 10000.0 None 2.41287 0.00467 0.02703
Sep 2013 to Sep 2014 10000.0 None 2.41343 0.00467 0.02711
Oct 2013 to Oct 2014 10000.0 None 2.41342 0.00467 0.02713

Nov 2013 to Nov 2014 10000.0 None 2.41571 0.00468 0.02724
Dec 2013 to Dec 2014 10000.0 None 2.42333 0.00499 0.02675

TABLE A.2
ALTERNATIVE ROLLING WINDOWS 2014-2015

Time span xmin xmax α σ KS distance
Jan 2014 to Jan 2015 10000.0 None 2.42658 0.00517 0.02904
Feb 2014 to Feb 2015 10000.0 None 2.43867 0.00534 0.03151
Mar 2014 to Mar 2015 10000.0 None 2.44249 0.00543 0.03175
Apr 2014 to Apr 2015 10000.0 None 2.39119 0.00667 0.02820

May 2014 to May 2015 10000.0 None 2.36747 0.00776 0.04242
Jun 2014 to Jun 2015 10000.0 None 2.30978 0.00902 0.06795
Jul 2014 to Jul 2015 10000.0 None 2.33608 0.01354 0.08392

Aug 2014 to Aug 2015 10000.0 None 2.41757 0.07566 0.10755
Sep 2014 to Sep 2015 10000.0 None 2.25862 0.07645 0.05271
Oct 2014 to Oct 2015 10000.0 None 2.11551 0.06839 0.04081

Nov 2014 to Nov 2015 10000.0 None 2.10693 0.06591 0.04103
Dec 2014 to Dec 2015 10000.0 None 2.15541 0.06551 0.03761



TABLE A.3
ALTERNATIVE ROLLING WINDOWS 2015-2016

Time span xmin xmax α σ KS distance
Jan 2015 to Jan 2016 10000.0 None 2.16231 0.06538 0.03732
Feb 2015 to Feb 2016 10000.0 None 2.16474 0.06562 0.03697
Mar 2015 to Mar 2016 10000.0 None 2.17525 0.05966 0.02780
Apr 2015 to Apr 2016 10000.0 None 2.18867 0.04328 0.02262

May 2015 to May 2016 10000.0 None 2.02853 0.03193 0.02375
Jun 2015 to Jun 2016 10000.0 None 1.94477 0.02590 0.04099
Jul 2015 to Jul 2016 10000.0 None 1.90214 0.02346 0.04616

Aug 2015 to Aug 2016 10000.0 None 1.85518 0.02082 0.05980
Sep 2015 to Sep 2016 10000.0 None 1.83482 0.01904 0.06646
Oct 2015 to Oct 2016 10000.0 None 1.82726 0.01720 0.06877

Nov 2015 to Nov 2016 10000.0 None 1.80561 0.01529 0.07469
Dec 2015 to Dec 2016 10000.0 None 1.79450 0.01454 0.07932

TABLE A.4
ALTERNATIVE ROLLING WINDOWS 2016-2017

Time span xmin xmax α σ KS distance
Jan 2016 to Jan 2017 10000.0 None 1.78386 0.01385 0.07996
Feb 2016 to Feb 2017 10000.0 None 1.76831 0.01309 0.08193
Mar 2016 to Mar 2017 10000.0 None 1.73211 0.01209 0.08824
Apr 2016 to Apr 2017 10000.0 None 1.68462 0.01151 0.10738

May 2016 to May 2017 10000.0 None 1.67362 0.01149 0.11176
Jun 2016 to Jun 2017 10000.0 None 1.66259 0.01146 0.11147
Jul 2016 to Jul 2017 10000.0 None 1.63081 0.01099 0.11134

Aug 2016 to Aug 2017 10000.0 None 1.61096 0.01094 0.10748
Sep 2016 to Sep 2017 10000.0 None 1.58945 0.01079 0.10884
Oct 2016 to Oct 2017 10000.0 None 1.56693 0.01120 0.10994

Nov 2016 to Nov 2017 10000.0 None 1.54150 0.01185 0.11897
Dec 2016 to Dec 2017 10000.0 None 1.52084 0.01208 0.12635

TABLE A.5
ALTERNATIVE ROLLING WINDOWS 2017-2018

Time span xmin xmax α σ KS distance
Jan 2017 to Jan 2018 10000.0 None 1.50240 0.01223 0.13342
Feb 2017 to Feb 2018 10000.0 None 1.48852 0.01263 0.14053
Mar 2017 to Mar 2018 10000.0 None 1.48473 0.01393 0.12442
Apr 2017 to Apr 2018 10000.0 None 1.47737 0.01517 0.09764

May 2017 to May 2018 10000.0 None 1.45170 0.01577 0.10293
Jun 2017 to Jun 2018 10000.0 None 1.43037 0.01693 0.09390
Jul 2017 to Jul 2018 10000.0 None 1.45530 0.02093 0.08675

Aug 2017 to Aug 2018 10000.0 None 1.46989 0.02548 0.11490
Sep 2017 to Sep 2018 10000.0 None 1.52679 0.03429 0.08446
Oct 2017 to Oct 2018 10000.0 None 1.58965 0.03480 0.04851

Nov 2017 to Nov 2018 10000.0 None 1.61834 0.03445 0.03769
Dec 2017 to Dec 2018 10000.0 None 1.70260 0.03504 0.05331

TABLE A.6
ALTERNATIVE ROLLING WINDOWS 2018-2019

Time span xmin xmax α σ KS distance
Jan 2018 to Jan 2019 10000.0 None 1.77870 0.04204 0.06623
Feb 2018 to Feb 2019 10000.0 None 1.82802 0.04636 0.07462
Mar 2018 to Mar 2019 10000.0 None 1.84693 0.04889 0.07772
Apr 2018 to Apr 2019 10000.0 None 1.92612 0.05495 0.06630

May 2018 to May 2019 10000.0 None 2.00447 0.06182 0.06792
Jun 2018 to Jun 2019 10000.0 None 2.00387 0.06261 0.07619
Jul 2018 to Jul 2019 10000.0 None 2.03304 0.06456 0.08716

Aug 2018 to Aug 2019 10000.0 None 2.01844 0.06377 0.09136
Sep 2018 to Sep 2019 10000.0 None 2.03407 0.06475 0.09215
Oct 2018 to Oct 2019 10000.0 None 1.98531 0.06932 0.06957

Nov 2018 to Nov 2019 10000.0 None 1.99236 0.07796 0.05507
Dec 2018 to Dec 2019 10000.0 None 1.96680 0.12586 0.08643



Number of files in corpus File Type
10,590 HTML document ASCII text with very long lines with no line terminators
10,928 HTML document ISO-8859 text with very long lines with CRLF LF NEL line terminators
11,122 XML 1.0 document Non-ISO extended-ASCII text with very long lines
11,799 HTML document Non-ISO extended-ASCII text with very long lines with CRLF line terminators with overstriking
12,900 XML 1.0 document ISO-8859 text with very long lines with CRLF LF line terminators
13,011 HTML document ISO-8859 text
13,253 ASCII text
13,499 XML 1.0 document ISO-8859 text with CRLF LF line terminators
14,886 PE32 executable (GUI) Intel 80386 Mono/.Net assembly for MS Windows
15,097 ASCII text with very long lines with no line terminators
16,035 HTML document Non-ISO extended-ASCII text with very long lines with CRLF CR NEL line terminators
17,587 HTML document ISO-8859 text with CRLF LF line terminators
17,795 XML 1.0 document ASCII text with very long lines
19,213 XML 1.0 document ISO-8859 text with CRLF CR LF line terminators
19,618 HTML document ISO-8859 text with very long lines with CRLF NEL line terminators
24,570 Bourne-Again shell script ASCII text executable
24,719 HTML document UTF-8 Unicode text with CRLF line terminators
31,863 Java archive data (JAR)
31,991 HTML document ASCII text with CRLF LF line terminators
32,029 HTML document ISO-8859 text with CRLF line terminators
32,076 HTML document UTF-8 Unicode (with BOM) text with very long lines with CR LF line terminators
33,475 XML 1.0 document Non-ISO extended-ASCII text with very long lines with CRLF LF line terminators
36,333 PE32 executable (GUI) Intel 80386 for MS Windows UPX compressed
40,915 HTML document Non-ISO extended-ASCII text with very long lines with LF NEL line terminators
42,063 XML 1.0 document UTF-8 Unicode text with very long lines with CRLF CR LF line terminators
42,280 PE32 executable (GUI) Intel 80386 for MS Windows Nullsoft Installer self-extracting archive
46,890 HTML document Non-ISO extended-ASCII text with very long lines with CRLF CR line terminators
47,505 UTF-8 Unicode text with very long lines
49,164 HTML document Non-ISO extended-ASCII text with very long lines with CRLF CR LF NEL line terminators
49,909 PE32 executable (DLL) (GUI) Intel 80386 for MS Windows
55,625 XML 1.0 document UTF-8 Unicode text with very long lines with CRLF LF line terminators
55,728 ASCII text with very long lines
60,420 HTML document UTF-8 Unicode (with BOM) text with very long lines with CRLF CR LF line terminators
61,236 HTML document UTF-8 Unicode text with very long lines with CRLF CR line terminators
64,568 FGDC-STD-001-1998
72,059 Dalvik dex file version 035
77,197 XML 1.0 document UTF-8 Unicode text with very long lines
83,215 HTML document UTF-8 Unicode text with CRLF LF line terminators
84,585 HTML document ISO-8859 text with very long lines with CRLF CR LF line terminators
85,299 HTML document UTF-8 Unicode (with BOM) text with very long lines
91,387 HTML document ASCII text with CRLF line terminators
95,065 HTML document UTF-8 Unicode text

112,427 HTML document ASCII text with very long lines with CR LF line terminators
123,561 Non-ISO extended-ASCII text with CRLF NEL line terminators
129,410 HTML document ASCII text
137,262 HTML document Non-ISO extended-ASCII text with very long lines with CRLF CR LF line terminators
168,488 HTML document UTF-8 Unicode (with BOM) text with very long lines with CRLF line terminators
169,299 HTML document UTF-8 Unicode text with very long lines with no line terminators
239,686 XML 1.0 document Non-ISO extended-ASCII text with very long lines with LF NEL line terminators
240,103 Zip archive data at least v2.0 to extract
333,889 HTML document ISO-8859 text with very long lines with CRLF CR line terminators
352,830 HTML document Non-ISO extended-ASCII text with very long lines with CRLF LF NEL line terminators
411,263 HTML document ASCII text with very long lines with CRLF line terminators
481,029 HTML document ASCII text with very long lines with CRLF CR LF line terminators
511,081 HTML document UTF-8 Unicode text with very long lines with CR LF line terminators
703,792 data
861,712 PE32 executable (GUI) Intel 80386 for MS Windows
895,169 HTML document Non-ISO extended-ASCII text with very long lines with CRLF NEL line terminators

1,384,847 ASCII text with very long lines with CRLF line terminators
1,478,909 HTML document UTF-8 Unicode (with BOM) text with very long lines with CRLF LF line terminators
1,928,664 HTML document ISO-8859 text with very long lines with CRLF LF line terminators
2,226,704 HTML document Non-ISO extended-ASCII text with very long lines with CRLF LF line terminators
2,751,110 HTML document ISO-8859 text with very long lines
3,524,466 HTML document ISO-8859 text with very long lines with CRLF line terminators
6,551,316 HTML document ASCII text with very long lines with CRLF LF line terminators
9,092,887 HTML document Non-ISO extended-ASCII text with very long lines

12,062,927 HTML document UTF-8 Unicode text with very long lines with CRLF CR LF line terminators
13,097,315 HTML document ASCII text with very long lines
18,345,823 HTML document UTF-8 Unicode text with very long lines with CRLF line terminators
22,905,879 HTML document UTF-8 Unicode text with very long lines with CRLF LF line terminators
26,003,413 HTML document Non-ISO extended-ASCII text with very long lines with CRLF line terminators
48,203,226 HTML document UTF-8 Unicode text with very long lines


